3 research outputs found

    Magnetic resonance image-based brain tumour segmentation methods : a systematic review

    Get PDF
    Background: Image segmentation is an essential step in the analysis and subsequent characterisation of brain tumours through magnetic resonance imaging. In the literature, segmentation methods are empowered by open-access magnetic resonance imaging datasets, such as the brain tumour segmentation dataset. Moreover, with the increased use of artificial intelligence methods in medical imaging, access to larger data repositories has become vital in method development. Purpose: To determine what automated brain tumour segmentation techniques can medical imaging specialists and clinicians use to identify tumour components, compared to manual segmentation. Methods: We conducted a systematic review of 572 brain tumour segmentation studies during 2015–2020. We reviewed segmentation techniques using T1-weighted, T2-weighted, gadolinium-enhanced T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and perfusion-weighted magnetic resonance imaging sequences. Moreover, we assessed physics or mathematics-based methods, deep learning methods, and software-based or semi-automatic methods, as applied to magnetic resonance imaging techniques. Particularly, we synthesised each method as per the utilised magnetic resonance imaging sequences, study population, technical approach (such as deep learning) and performance score measures (such as Dice score). Statistical tests: We compared median Dice score in segmenting the whole tumour, tumour core and enhanced tumour. Results: We found that T1-weighted, gadolinium-enhanced T1-weighted, T2-weighted and fluid-attenuated inversion recovery magnetic resonance imaging are used the most in various segmentation algorithms. However, there is limited use of perfusion-weighted and diffusion-weighted magnetic resonance imaging. Moreover, we found that the U-Net deep learning technology is cited the most, and has high accuracy (Dice score 0.9) for magnetic resonance imaging-based brain tumour segmentation. Conclusion: U-Net is a promising deep learning technology for magnetic resonance imaging-based brain tumour segmentation. The community should be encouraged to contribute open-access datasets so training, testing and validation of deep learning algorithms can be improved, particularly for diffusion- and perfusion-weighted magnetic resonance imaging, where there are limited datasets available

    A novel hierarchical template matching model for cardiac motion estimation

    Get PDF
    Cardiovascular disease diagnosis and prognosis can be improved by measuring patient-specific in-vivo local myocardial strain using Magnetic Resonance Imaging. Local myocardial strain can be determined by tracking the movement of sample muscles points during cardiac cycle using cardiac motion estimation model. The tracking accuracy of the benchmark Free Form Deformation (FFD) model is greatly affected due to its dependency on tunable parameters and regularisation function. Therefore, Hierarchical Template Matching (HTM) model, which is independent of tunable parameters, regularisation function, and image-specific features, is proposed in this article. HTM has dense and uniform points correspondence that provides HTM with the ability to estimate local muscular deformation with a promising accuracy of less than half a millimetre of cardiac wall muscle. As a result, the muscles tracking accuracy has been significantly (p<0.001) improved (30%) compared to the benchmark model. Such merits of HTM provide reliably calculated clinical measures which can be incorporated into the decision-making process of cardiac disease diagnosis and prognosis

    Identifying myocardial infarction using hierarchical template matching–based myocardial strain : algorithm development and usability study

    Get PDF
    Background: Myocardial infarction (MI; location and extent of infarction) can be determined by late enhancement cardiac magnetic resonance (CMR) imaging, which requires the injection of a potentially harmful gadolinium-based contrast agent (GBCA). Alternatively, emerging research in the area of myocardial strain has shown potential to identify MI using strain values. Objective: This study aims to identify the location of MI by developing an applied algorithmic method of circumferential strain (CS) values, which are derived through a novel hierarchical template matching (HTM) method. Methods: HTM-based CS H-spread from end-diastole to end-systole was used to develop an applied method. Grid-tagging magnetic resonance imaging was used to calculate strain values in the left ventricular (LV) myocardium, followed by the 16-segment American Heart Association model. The data set was used with k-fold cross-validation to estimate the percentage reduction of H-spread among infarcted and noninfarcted LV segments. A total of 43 participants (38 MI and 5 healthy) who underwent CMR imaging were retrospectively selected. Infarcted segments detected by using this method were validated by comparison with late enhancement CMR, and the diagnostic performance of the applied algorithmic method was evaluated with a receiver operating characteristic curve test. Results: The H-spread of the CS was reduced in infarcted segments compared with noninfarcted segments of the LV. The reductions were 30% in basal segments, 30% in midventricular segments, and 20% in apical LV segments. The diagnostic accuracy of detection, using the reported method, was represented by area under the curve values, which were 0.85, 0.82, and 0.87 for basal, midventricular, and apical slices, respectively, demonstrating good agreement with the late-gadolinium enhancement–based detections. Conclusions: The proposed applied algorithmic method has the potential to accurately identify the location of infarcted LV segments without the administration of late-gadolinium enhancement. Such an approach adds the potential to safely identify MI, potentially reduce patient scanning time, and extend the utility of CMR in patients who are contraindicated for the use of GBCA
    corecore